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Abstract

Q-learning, which seeks to learn the optimal Q-

function of a Markov decision process (MDP) in

a model-free fashion, lies at the heart of reinforce-

ment learning. Focusing on the synchronous set-

ting (such that independent samples for all state-

action pairs are queried via a generative model

in each iteration), substantial progress has been

made recently towards understanding the sample

efficiency of Q-learning. To yield an entrywise

ε-accurate estimate of the optimal Q-function,

state-of-the-art theory requires at least an order

of
|S||A|

(1−γ)5ε2 samples in the infinite-horizon γ-

discounted setting. In this work, we sharpen the

sample complexity of synchronous Q-learning to

the order of
|S||A|

(1−γ)4ε2 (up to some logarithmic fac-

tor) for any 0 < ε < 1, leading to an order-wise

improvement in 1
1−γ . Analogous results are de-

rived for finite-horizon MDPs as well. Our sample

complexity analysis unveils the effectiveness of

vanilla Q-learning, which matches that of speedy

Q-learning without requiring extra computation

and storage. Our result is obtained by identifying

novel error decompositions and recursions, which

might shed light on how to study other variants of

Q-learning.

1. Introduction

Characterizing the sample efficiency of Q-learning (Watkins

& Dayan, 1992; Watkins, 1989) — which is arguably one

of the most widely adopted model-free algorithms — lies

at the core of the statistical foundation of reinforcement

learning (RL). While classical convergence analyses for
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Q-learning (Borkar & Meyn, 2000; Jaakkola et al., 1994;

Szepesvári, 1998; Tsitsiklis, 1994) have been primarily fo-

cused on the asymptotic regime — in which the number of

iterations tends to infinity with other problem parameters

held fixed — recent years have witnessed a paradigm shift

from asymptotic analyses towards a finite-sample / finite-

time framework (Beck & Srikant, 2012; Chen et al., 2020;

2021; Even-Dar & Mansour, 2003; Kearns & Singh, 1999;

Lee & He, 2018; Li et al., 2020b; Qu & Wierman, 2020;

Wainwright, 2019b; Weng et al., 2020a; Xiong et al., 2020).

Drawing on the insights from high-dimensional statistics

(Wainwright, 2019a), such a modern non-asymptotic frame-

work unveils more clear and informative dependence of

the sample complexity on salient problem parameters, and

has been developed for Q-learning under multiple data col-

lection mechanisms (Beck & Srikant, 2012; Even-Dar &

Mansour, 2003; Jin et al., 2018; Li et al., 2020b; Qu &

Wierman, 2020; Wainwright, 2019b; Wang et al., 2021).

In this paper, we revisit the sample complexity of Q-learning

for tabular Markov decision processes (MDPs), assuming

access to a generative model or a simulator that produces

independent samples for all state-action pairs in each itera-

tion (which is often referred to as the synchronous setting)

(Kakade, 2003; Kearns et al., 2002). Our focal point is the

`∞-based sample complexity, namely, the number of sam-

ples needed for Q-learning to yield an entrywise ε-accurate

estimate of the optimal Q-function. Despite a number of

prior work tackling this setting, however, the dependency

of the sample complexity on the (effective) horizon of the

MDP remains unsettled. Take γ-discounted infinite-horizon

MDPs for instance: the state-of-the-art theory Chen et al.

(2020); Wainwright (2019b) requires at least an order of
|S||A|

(1−γ)5ε2 samples (up to some log factor), where S and

A represent the state space and the action space, respec-

tively. However, it remains unclear whether this scaling is

essential for Q-learning algorithms or it is improvable via

a more refined theory. In fact, Wainwright (2019b) exhib-

ited a numerical example that hints at the non-sharpness of

this scaling, that is, the numerical experiments conducted

therein suggested a scaling of
|S||A|

(1−γ)4ε2 for certain problem

instances. To bridge the gap between the theoretical predic-

tion and the empirical observation, it is natural to investigate
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the following question:

Is it possible to tighten the dependence on effective horizon

in the sample complexity of Q-learning?

The above-mentioned issue comes up in finite-horizon

MDPs as well, in which the scaling of the sample complex-

ity with the horizon H of the MDP remains undetermined.

1.1. Main contributions

In this paper, we develop a refined theoretical framework

that allows one to tighten the `∞-based sample complexity

of Q-learning for two different types of MDPs with state

space S and action space A. Here and throughout, the

notation Õ(·) hides any logarithmic dependencies.

• For γ-discounted infinite horizon MDPs and any 0 <
ε < 1, we show that a total number of

Õ
( |S||A|
(1− γ)4ε2

)
(1)

samples are sufficient to guarantee ε-accuracy. This

finding improves prior theory (Chen et al., 2020; Wain-

wright, 2019b) by a factor of 1
1−γ .

• Analogously, for finite-horizon MDPs with horizon H ,

we demonstrate that

Õ
(H4

ε2

)
samples per state-action pair (2)

are sufficient for Q-learning to attain ε-accuracy.

We consider both rescaled linear and constant learning rates;

see Table 1 for more detailed comparisons with existing

literature. For both of the above scenarios, our theoretical

guarantees are the tightest known to date for vanilla Q-

learning.

Encouragingly, the sample complexity (1) is sharp in a mini-

max sense (up to some logarithmic factor). In fact, our com-

panion paper (see Li et al. (2021a, Theorem 2)) constructs

a hard MDP instance to show that the sample complexity

of plain Q-learning at least exceeds 1
(1−γ)4 , thereby demon-

strating the sharpness of our sample complexity upper bound

(1). In addition, it is also worth emphasizing that our sample

complexity bound matches the theory for speedy Q-learning

(Ghavamzadeh et al., 2011) without requiring extra compu-

tation and storage. Our analysis framework uncovers a sort

of crucial error decompositions and recursions that are pre-

viously unavailable, which might shed light on how to pin

down the sample efficiency of other variants of Q-learning

like asynchronous Q-learning and double Q-learning.

1.2. Related work

There is a growing literature dedicated to analyzing non-

asymptotic behavior of value-based RL algorithms in vari-

ous scenarios. In the discussion below, we subsample the

literature and focus on the papers that are the closest to ours.

Finite-sample `∞ guarantees for synchronous Q-

learning. The sample complexities derived in the liter-

ature often depend crucially on the choices of learning rates.

Even-Dar & Mansour (2003) studied the sample complexity

of Q-learning with linear learning rates 1/t or polynomial

learning rates 1/tω , which scales as Õ( |S||A|
(1−γ)5ε2.5 ) when op-

timized w.r.t. the effective horizon (attained when ω = 4/5).

The resulting sample complexity, however, is suboptimal in

terms of not only its dependency on 1
1−γ but also the target

accuracy ε. Beck & Srikant (2012) investigated the case of

constant learning rates; however, their result suffered from

an additional factor of |S||A|, which could be prohibitively

large in practice. More recently, Chen et al. (2020); Wain-

wright (2019b) further analyzed the sample complexity of

Q-learning with either constant learning rates or linearly

rescaled learning rates, leading to the state-of-the-art bound

Õ
( |S||A|
(1−γ)5ε2

)
. However, this result remains suboptimal in

terms of its scaling in 1
1−γ . See Table 1 for details.

Finite-sample `∞ guarantees for asynchronous Q-

learning. Moving beyond the synchronous model con-

sidered herein, (Beck & Srikant, 2012; Even-Dar & Man-

sour, 2003; Li et al., 2020b; Qu & Wierman, 2020) devel-

oped non-asymptotic convergence guarantees for the asyn-

chronous setting, where the data samples take the form

of a single Markovian trajectory (following some behav-

ior policy) and only a single state-action pair is updated

in each iteration. The state-of-the-art sample complexity

bound for asynchronous Q-learning (Li et al., 2020b) scales

as Õ
(

1
µmin(1−γ)5ε2 + tmix

µmin(1−γ)

)
, where µmin stands for the

minimum state-action occupancy probability of the sam-

ple trajectory and tmix represents the mixing time. Clearly,

this sample complexity bound also exhibits a scaling of

Õ
(

1
(1−γ)5

)
w.r.t. the effective horizon. The analysis frame-

work developed in this paper might be applicable to help

sharpen the dependency of sample complexity on 1
1−γ for

asynchronous Q-learning.

Finite-sample `∞ guarantees of other Q-learning vari-

ants. With the aim of alleviating the suboptimal depen-

dency on the effective horizon in vanilla Q-learning and

improving sample efficiency, several variants of Q-learning

have been proposed and analyzed. Azar et al. (2011) pro-

posed speedy Q-learning, which achieves a sample com-

plexity of Õ
(

1
(1−γ)4ε2

)
at the expense of doubling the com-

putation and storage complexity. Our result on vanilla Q-
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paper learning rates sample complexity

(Even-Dar & Mansour, 2003) linear: 1
t 2

1
1−γ

|S||A|
(1−γ)4ε2

(Even-Dar & Mansour, 2003) polynomial: 1
tω , ω ∈ (1/2, 1) |S||A|

{(
1

(1−γ)4ε2

)1/ω
+

(
1

1−γ

) 1
1−ω

}

(Beck & Srikant, 2012) constant:
(1−γ)4ε2

|S||A|
|S|2|A|2

(1−γ)5ε2

(Wainwright, 2019b) rescaled linear: 1
1+(1−γ)t

|S||A|
(1−γ)5ε2

(Wainwright, 2019b) polynomial: 1
tω , ω ∈ (0, 1) |S||A|

{(
1

(1−γ)4ε2

)1/ω
+

(
1

1−γ

) 1
1−ω

}

(Chen et al., 2020) rescaled linear: 1
1

(1−γ)2
+(1−γ)t

|S||A|
(1−γ)5ε2

(Chen et al., 2020) constant: (1− γ)4ε2 |S||A|
(1−γ)5ε2

this work rescaled linear: 1
1+(1−γ)t

|S||A|
(1−γ)4ε2

this work constant: (1− γ)3ε2 |S||A|
(1−γ)4ε2

Table 1. Comparisons of existing sample complexity bounds of synchronous Q-learning for an infinite-horizon γ-discounted MDP with

state space S and action space A, where 0 < ε < 1 is the target accuracy level. Here, sample complexity refers to the total number

of samples needed to yield either maxs,a |QT (s, a)−Q?(s, a)| ≤ ε with high probability or E
[
maxs,a |QT (s, a)−Q?(s, a)|

]
≤ ε,

where T is the total number of iterations. All logarithmic factors are omitted in the table to simplify the expressions.

learning order-wise matches that of speedy Q-learning. In

addition, Wainwright (2019c) proposed a variance-reduced

Q-learning algorithm that is shown to be minimax optimal in

the range ε ∈ (0, 1) with a sample complexity Õ
(

1
(1−γ)3ε2

)
,

which was subsequently generalized to the asynchronous

setting by Li et al. (2020b). The `∞ bounds for variance-

reduced TD learning have been investigated in Khamaru

et al. (2020); Mou et al. (2020). Last but not least, Xiong

et al. (2020) established the finite-sample convergence of

double Q-learning following the framework of (Even-Dar &

Mansour, 2003); however, it remains unclear whether dou-

ble Q-learning can provably outperform vanilla Q-learning

in terms of the sample efficiency. In addition, another

strand of recent work (Jin et al., 2018; Wang et al., 2020;

Zhang et al., 2020a;b) considered the sample efficiency of

Q-learning type algorithms paired with proper exploration

strategies (e.g., UCB exploration) under the framework of

regret analysis, which is beyond the reach of the current

paper.

Others. There are also several other strands of related pa-

pers that tackle model-free algorithms but do not pursue

`∞-based non-asymptotic guarantees. For instance, Bhan-

dari et al. (2018); Chen et al. (2019); Doan et al. (2019);

Gupta et al. (2019); Srikant & Ying (2019); Wu et al. (2020);

Xu et al. (2019a;b) developed finite-sample (weighted) `2
convergence guarantees for several model-free algorithms,

accommodating linear function approximation as well as

off-policy evaluation. Another line of work investigated the

asymptotic behavior of some variants of Q-learning, e.g.,

double Q-learning (Weng et al., 2020b;c) and relative Q-

learning (Devraj & Meyn, 2020). More general function

approximation schemes (e.g., certain families of neural net-

work approximations) have been studied in Cai et al. (2019);

Fan et al. (2019); Li et al. (2021b); Wai et al. (2019); Xu

& Gu (2020) as well. These are beyond the scope of the

present paper.

2. Background and algorithm

This paper concentrates on tabular MDPs and accounts for

both the discounted infinite-horizon setting and the finite-

horizon counterpart (Bertsekas, 2017). In both settings, we

denote by S = {1, · · · , |S|} and A = {1, · · · , |A|} the

state space and the action space of the MDP, respectively.

Here and throughout, ∆(S) stands for the probability sim-

plex over the set S .

2.1. Q-learning for infinite-horizon discounted MDPs

Discounted infinite-horizon MDPs. Consider an infinite-

horizon MDP as represented by a quintuple M =
(S,A, P, r, γ), where γ ∈ (0, 1) indicates the discount fac-

tor, P : S×A → ∆(S) represents the probability transition

kernel (i.e., P (s′ | s, a) is the probability of transiting to

state s′ from each state-action pair (s, a) ∈ S × A), and

r : S × A → [0, 1] stands for the reward function (i.e.,

r(s, a) is the immediate reward collected in state s ∈ S
when action a ∈ A is taken). Note that the immediate re-

wards are assumed to lie within [0, 1] throughout this paper.
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Value function and Q-function. A common objective in

RL is to maximize a sort of long-term rewards called value

functions or Q-functions. Specifically, given a deterministic

policy π : S → A (so that π(s) ∈ A specifies the action

selection rule in state s), the associated value function and

Q-function of π are defined respectively by

V π(s) := E

[
∞∑

k=0

γkr(sk, ak)
∣∣∣ s0 = s

]
,

for all s ∈ S , and

Qπ(s, a) := E

[
∞∑

k=0

γkr(sk, ak)
∣∣∣ s0 = s, a0 = a

]
,

for all (s, a) ∈ S × A. Here, {(sk, ak)}k≥0 is a trajec-

tory generated by the MDP under policy π (except a0 when

evaluating the Q-function), and the expectations are eval-

uated with respect to the randomness of the MDP trajec-

tory. Given that the immediate rewards fall within [0, 1], it

can be straightforwardly verified that 0 ≤ V π(s) ≤ 1
1−γ

and 0 ≤ Qπ(s, a) ≤ 1
1−γ for any π and any state-action

pair (s, a). The optimal value function V ? and optimal

Q-function Q? are defined respectively as

V ?(s) := max
π

V π(s), Q?(s, a) := max
π

Qπ(s, a)

for any state-action pair (s, a) ∈ S ×A.

Q-learning. In this work, we assume access to a gener-

ative model (Kearns & Singh, 1999; Sidford et al., 2018):

in each iteration t, we collect an independent sample

st(s, a) ∼ P (· | s, a) for every state-action pair (s, a) ∈
S × A. The synchronous Q-learning algorithm maintains

a Q-function estimate Qt : S × A → R for all t ≥ 0;

in each iteration t, the algorithm updates all entries of the

Q-function estimate via the following update rule

Qt = (1− ηt)Qt−1 + ηtTt(Qt−1). (3)

Here, ηt denotes the learning rate or the step size in the t-th
iteration, and Tt denotes the empirical Bellman operator

constructed by samples collected in the t-th iteration, i.e.,

Tt(Q)(s, a) := r(s, a) + γmax
a′∈A

Q(st, a
′) (4)

st ≡ st(s, a) ∼ P (· | s, a)

for each state-action pair (s, a) ∈ S ×A. Obviously, Tt is

an unbiased estimate of the Bellman operator T given by

T (Q)(s, a) := r(s, a) + γEs′∼P (·|s,a)

[
max
a′∈A

Q(s′, a′)
]

for any state-action pair (s, a) ∈ S × A. Noteworthily,

the optimal Q-function Q? is the unique fixed point of the

Bellman operator (Bellman, 1952), that is, T (Q?) = Q?.

Algorithm 1 Synchronous Q-learning for infinite-horizon

discounted MDPs

1: inputs: learning rates {ηt}, number of iterations T ,

discount factor γ, initial estimate Q0.

2: for t = 1, 2, · · · , T do

3: Draw st(s, a) ∼ P (· | s, a) for each (s, a) ∈ S ×A.

4: Compute Qt according to (3) and (4).

5: end for

We initialize the algorithm so that 0 ≤ Q0(s, a) ≤ 1
1−γ

for all (s, a). In addition, the corresponding value function

estimate Vt : S → R in the t-th iteration is defined as

∀s ∈ S : Vt(s) := max
a∈A

Qt(s, a). (5)

The complete algorithm is summarized in Algorithm 1.

2.2. Q-learning for finite-horizon MDPs

Finite-horizon MDPs. We now turn attention to a finite-

horizon MDP, which can be represented and described by

the quintuple M = (S,A, {Ph}Hh=1, {rh}Hh=1, H). Here,

H represents the time horizon of the MDP. For any 1 ≤
h ≤ H , we let Ph : S ×A → ∆(S) denote the probability

transition kernel at step h (i.e., Ph(s
′ | s, a) is the probability

of transiting to s′ from (s, a) at step h), and rh : S × A →
[0, 1] indicates the reward function at step h (i.e., rh(s, a)
is the immediate reward at step h in response to (s, a)). As

before, we assume normalized rewards such that all the

rh(s, a)’s reside within the range [0, 1].

Value function and Q-function. In a finite-horizon MDP,

the value function and Q-function associated with a deter-

ministic policy π : S × {1, . . . , H} → A are defined by

V π
h (s) := E

[
H∑

k=h

rk(sk, ak)
∣∣∣ sh = s

]

for all s ∈ S and all 1 ≤ h ≤ H , and

Qπ
h(s, a) := E

[
H∑

k=h

rk(sk, ak)
∣∣∣ sh = s, ah = a

]

for all (s, a) ∈ S × A and all 1 ≤ h ≤ H . As before,

the expectations are taken over the randomness of the MDP

trajectory {(sk, ak)}1≤k≤H induced by the transition kernel

{Ph}Hh=1, where the policy depends on the step index h as

well as the current state s. In view of the assumed bounds for

the immediate rewards, it is easily seen that 0 ≤ V π
h (s) ≤

H and 0 ≤ Qπ
h(s, a) ≤ H for any π, any state-action pair

(s, a), and any step h. Akin to the infinite-horizon scenario,

the optimal value functions {V ?
h } and optimal Q-functions

{Q?
h} are defined respectively by

V ?
h (s) := max

π
V π
h (s), Q?

h(s, a) := max
π

Qπ
h(s, a)
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Algorithm 2 Synchronous Q-learning for finite-horizon

MDPs

1: inputs: learning rates {ηt}, number of iterations T ,

initial estimate {Q0,h}Hh=1.

2: for t = 1, 2, · · · , T do

3: Set Qt,H+1 = 0.

4: for h = H,H − 1, · · · , 1 do

5: Draw st,h(s, a) ∼ Ph(· | s, a) for each (s, a).
6: Compute Qt according to (6) and (7).

7: end for

8: end for

for any state-action pair (s, a) ∈ S×A and any 1 ≤ h ≤ H .

A distinguishing feature of finite-horizon MDPs is the non-

stationarity of value functions and Q-functions across h.

Q-learning. Assume that we have access to a generative

model; in each iteration, we draw an independent sample

for each triple (s, a, h) as follows

st,h(s, a) ∼ Ph(· | s, a).

In the t-th iteration, the synchronous Q-learning algorithm

updates the Q-function estimate Qt,h : S × A → R from

h = H to 1 as follows:

Qt,h = (1− ηt)Qt−1,h + ηtTt,h(Qt,h+1), (6)

where ηt denotes the learning rate in the t-th iteration, and

Tt,h is the empirical Bellman operator based on samples

generated in the t-th iteration for step h, namely,

Tt,h(Q)(s, a) := rh(s, a) + max
a′∈A

Q(st,h, a
′) (7)

st,h ≡ st,h(s, a) ∼ Ph(· | s, a)

for any state-action pair (s, a) ∈ S × A. Here, Tt,h can

be viewed as an unbiased estimate of the Bellman operator

defined for the finite-horizon case.

In addition, the initialization {Q0,h}Hh=1 of the algorithm

is chosen such that 0 ≤ Q0,h(s, a) ≤ H − h + 1 for all

(s, a) and all 1 ≤ h ≤ H . Throughout this paper, the value

function estimate Vt,h : S → R associated with the t-th
iterate and step h is defined as

∀s ∈ S : Vt,h(s) := max
a∈A

Qt,h(s, a). (8)

The complete algorithm is summarized in Algorithm 2.

Remark 1. Suppose that the probability transition kernel

of the MDP is time-invariant, namely, Ph ≡ P for all 1 ≤
h ≤ H . Then we only need to sample once for each (s, a) —

with a total number of |S||A| samples — in each iteration t.
This should be contrasted with the time-varying case where

a total number of |S||A|H samples are generated in each

iteration. Both cases have been studied for the finite-horizon

setting; see, e.g., Jin et al. (2018); Sidford et al. (2018).

3. Main results

With the above backgrounds in place, we are in a position

to state formally our main findings in this section.

3.1. Performance guarantees: infinite-horizon MDPs

We start by presenting our strengthened `∞-based sample

complexity of Q-learning for discounted infinite-horizon

MDPs — the setting described in Section 2.1.

Theorem 1. Consider any δ ∈ (0, 1) and ε ∈ (0, 1]. Sup-

pose that for any 0 ≤ t ≤ T , the learning rates satisfy

1

1 + c1(1−γ)T
log2 T

≤ ηt ≤
1

1 + c2(1−γ)t
log2 T

(9a)

for some small enough universal constants c1 ≥ c2 > 0.

Assume that the total number of iterations T obeys

T ≥ c3
(
log4 T

)(
log |S||A|T

δ

)

(1− γ)4ε2
(9b)

for some sufficiently large universal constant c3 > 0. If the

initialization obeys 0 ≤ Q0(s, a) ≤ 1
1−γ for any (s, a) ∈

S ×A, then Algorithm 1 achieves

max
(s,a)∈S×A

∣∣QT (s, a)−Q?(s, a)
∣∣ ≤ ε

with probability at least 1− δ.

Remark 2. This high-probability bound immediately trans-

lates to an expected error bound. Recognizing the crude

upper bound
∣∣QT (s, a) − Q?(s, a)

∣∣ ≤ 1
1−γ and taking

δ ≤ ε(1− γ), we reach

E

[
max
s,a

∣∣QT (s, a)−Q?(s, a)
∣∣
]
≤ ε(1−δ)+δ

1

1− γ
≤ 2ε,

provided that T ≥ c3(log
4 T )

(
log

|S||A|T
ε(1−γ)

)

(1−γ)4ε2 .

Theorem 1 develops a non-asymptotic bound on the iteration

complexity of Q-learning in the presence of a generative

model. A few remarks are in order.

Sample complexity and sharpened dependency on 1
1−γ .

Given that we draw |S||A| independent samples in each

iteration, the iteration complexity derived in Theorem 1

translates to the following sample complexity bound:

Õ
( |S||A|
(1− γ)4ε2

)
(10)

in order for Q-learning to attain ε-accuracy (0 < ε < 1) in

an entrywise sense. To the best of our knowledge, this is the

first result that breaks the
|S||A|

(1−γ)5ε2 barrier that is present in

all prior analyses for vanilla Q-learning (Beck & Srikant,
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2012; Chen et al., 2020; Li et al., 2020b; Qu & Wierman,

2020; Wainwright, 2019b). In addition, the dependence of

our result on the effective horizon (i.e., 1
(1−γ)4 ) matches a

lower bound developed in our companion paper for plain Q-

learning (see Li et al. (2021a, Theorem 2)), thus potentially

corroborating its sharpness.

Learning rates. In view of the assumption (9a), our

result accommodates two commonly seen learning rate

schemes: (i) linearly rescaled learning rates 1

1+
c2(1−γ)

log2 T
t
,

and (ii) iteration-invariant learning rates 1

1+
c1(1−γ)T

log2 T

(which

depend on the total number of iterations T but not the it-

eration number t). In particular, when the sample size is

T =
c3(log

4 T )
(
log

|S||A|T
δ

)

(1−γ)4ε2 , the constant learning rates can

be taken to be on the order of

ηt ≡ Õ
(
(1− γ)3ε2

)
, 0 ≤ t ≤ T,

depending almost solely on the discount factor γ and the

target accuracy ε. Interestingly, both learning rate schedules

lead to the same `∞-based sample complexity bound (in an

orderwise sense), making them appealing for practical use.

Comparison with minimax lower bounds. The careful

reader might remark that there remains a gap between our

sample complexity bound for Q-learning and the minimax

lower bound (Azar et al., 2013) — more specifically, the

minimax lower bound scales on the order of
|S||A|

(1−γ)3ε2 and

is achievable by the model-based approach (up to some

logarithmic factor) (Agarwal et al., 2020; Azar et al., 2013;

Li et al., 2020a). Fortunately, while vanilla Q-learning might

fall short of achieving minimax optimality, the dependency

of its sample complexity on the effective horizon can be

improved to optimal scaling with the assistance of variance

reduction; see Li et al. (2020b); Wainwright (2019c).

3.2. Performance guarantees: finite-horizon MDPs

Next, we move forward to present an analogous `∞-based

sample complexity of Q-learning for finite-horizon MDPs —

the setting formulated in Section 2.2.

Theorem 2. Consider an arbitrary quantity δ ∈ (0, 1) and

ε ∈ (0, 1]. Suppose that the learning rates obey

1

1 + c1T
H log2 T

≤ ηt ≤
1

1 + c2t
H log2 T

, 0 ≤ t ≤ T (11a)

for some small enough universal constants c1 ≥ c2 > 0,

and assume that the total number of iterations T obeys

T ≥ c3H
4
(
log3 T

)(
log |S||A|T

δ

)

ε2
(11b)

for some sufficiently large universal constant c3 > 0. If the

initialization obeys 0 ≤ Q0,h(s, a) ≤ H + 1 − h for any

(s, a) and any 1 ≤ h ≤ H , then Algorithm 2 achieves

max
(s,a)∈S×A, 1≤h≤H

∣∣QT,h(s, a)−Q?
h(s, a)

∣∣ ≤ ε

with probability exceeding 1− δ.

Remark 3. Similar to Remark 2, Theorem 2 implies that

E

[
max
s,a,h

∣∣QT,h(s, a)−Q?
h(s, a)

∣∣
]
≤ 2ε

as soon as T ≥ c3H
4(log3 T )

(
log

|S||A|HT

ε

)

ε2 .

For the general scenario (namely, {Ph}Hh=1 vary across h),

we collect |S||A|H independent samples in each iteration,

and hence Theorem 2 uncovers a sample complexity at most

Õ
( |S||A|H5

ε2

)
. (12)

When it comes to the special case where Ph ≡ P is invariant

across all 1 ≤ h ≤ H , our theorem continues to hold if

we generate |S||A| independent samples in each iteration

(with one sample for each state-action pair (s, a) w.r.t. P ),

leading to a reduced sample complexity of

Õ
( |S||A|H4

ε2

)
. (13)

Interestingly, all this is achieved via the same learning rate

schedules (i.e., rescaled linear or constant learning rates) as

for the discounted infinite-horizon case.

4. Analysis: discounted infinite-horizon

MDPs

This section outlines the key ideas for the establishment of

our main theorems, focusing on the infinite-horizon setting.

The full details of the proof for the infinite-horizon case can

be found in our companion paper Li et al. (2021a). The proof

for finite-horizon MDPs follows an analogous argument, and

is postponed to the supplementary material. Before delving

into proof details, we first introduce convenient vector and

matrix notations that shall be used frequently.

4.1. Vector and matrix notation

To begin with, for any matrix M , ‖M‖1 :=
maxi

∑
j |Mi,j | is defined as the largest row-wise `1 norm

of M . The matrix I represents the identity matrix. For

any vector a = [ai]
n
i=1 ∈ R

n, we define
√· and | · |

in a coordinate-wise manner, i.e.,
√
a := [

√
ai ]

n
i=1 ∈

R
n and |a| := [|ai|]ni=1 ∈ R

n. For a set of vectors

a1, · · · ,am ∈ R
n, we define max in an entrywise fash-

ion such that max1≤i≤m ai := [maxi ai,j ]
n
j=1. For any
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vectors a = [ai]
n
i=1 ∈ R

n and b = [bi]
n
i=1 ∈ R

n, the no-

tation a ≤ b (resp. a ≥ b) means ai ≤ bi (resp. ai ≥ bi)
for all 1 ≤ i ≤ n. We also let a ◦ b = [aibi]

n
i=1 denote the

Hadamard product. In addition, we denote by 1 (resp. ei)

the all-one vector (resp. the i-th standard basis vector).

We shall also introduce the matrix P ∈ R
|S||A|×|S| to repre-

sent the probability transition kernel P , whose (s, a)-th
row Ps,a is a probability vector representing P (· | s, a).
Additionally, we define square probability transition ma-

trix P π ∈ R
|S||A|×|S||A| (resp. Pπ ∈ R

|S|×|S|) induced

by a deterministic policy π over the state-action pairs

(resp. states) as follows:

P π := PΠ
π and Pπ := Π

πP (14)

where Π
π ∈ {0, 1}|S|×|S||A| is a projection matrix associ-

ated with the deterministic policy π:

Π
π =




e>π(1)
e>π(2)

. . .

e>π(|S|)


 . (15)

Moreover, for any vector V ∈ R
|S|, we define VarP (V ) ∈

R
|S||A| as follows:

VarP (V ) = P (V ◦ V )− (PV ) ◦ (PV ); (16)

in other words, the (s, a)-th entry of VarP (V ) is the vari-

ance of {V (s′)}1≤s′≤|S| w.r.t. the distribution P (· | s, a).

Moreover, we use the vector r ∈ R
|S||A| to represent the

reward function r, so that for any (s, a) ∈ S × A, the

(s, a)-th entry of r is r(s, a). Analogously, we shall employ

the vectors V π ∈ R
|S|, V ? ∈ R

|S|, Vt ∈ R
|S|, Qπ ∈

R
|S||A|, Q? ∈ R

|S||A| and Qt ∈ R
|S||A| to represent V π,

V ?, Vt, Q
π, Q? and Qt, respectively. Additionally, we

denote by πt the policy such that for any states, πt(s) =
min

{
a′ |Qt(s, a

′) = maxa′′ Qt(s, a
′′)
}

. In other words,

for any s ∈ S, the policy πt picks out the smallest indexed

action that attains the largest Q-value in the estimate Qt(s, ·).
As an immediate consequence, one has

Qt

(
s, πt(s)

)
= Vt(s), PVt = P πtQt ≥ P πQt (17)

for any π, where P π is defined in (14). Further, we intro-

duce a matrix Pt ∈ {0, 1}|S||A|×|S| such that

Pt

(
(s, a), s′

)
:=

{
1, if s′ = st(s, a)

0, otherwise
(18)

for any (s, a), which is an empirical transition matrix con-

structed using the samples collected in the t-th iteration.

Throughout the paper, the notation f(n) . g(n)
(resp. f(n) & g(n)) means that there exists a constant C0 >
0 such that |f(n)| ≤ C0|g(n)| (resp. |f(n)| ≥ C0|g(n)|).

4.2. Proof outline for Theorem 1

We are now positioned to describe how to establish Theorem

1, towards which we first express the Q-learning update rule

(3) and (4) using the above matrix notation. As can be easily

verified, Q-learning employs the samples in Pt (cf. (18)) to

perform the following update

Qt = (1− ηt)Qt−1 + ηt(r + γPtVt−1) (19)

in the t-th iteration. In the sequel, we denote by

∆t := Qt −Q? (20)

the error of the Q-function estimate in the t-th iteration.

4.2.1. KEY DECOMPOSITION

We start by decomposing the estimation error term ∆t. In

view of the update rule (19), we arrive at the following

elementary decomposition:

∆t = Qt −Q? = (1− ηt)Qt−1 + ηt
(
r + γPtVt−1

)
−Q?

= (1− ηt)
(
Qt−1 −Q?

)
+ ηt

(
r + γPtVt−1 −Q?

)

= (1− ηt)∆t−1 + ηtγ
(
PtVt−1 − PV ?

)

= (1− ηt)∆t−1

+ ηtγ
{
P (Vt−1 − V ?) + (Pt − P )Vt−1

}
. (21)

Further, the term P (Vt−1 − V ?) can be linked with ∆t−1

as follows

P (Vt−1 − V ?) = P πt−1Qt−1 − P π?

Q?

≤ P πt−1Qt−1 − P πt−1Q? = P πt−1∆t−1, (22a)

P (Vt−1 − V ?) = P πt−1Qt−1 − P π?

Q?

≥ P π?

Qt−1 − P π?

Q? = P π?

∆t−1, (22b)

where we have made use of the relation (17). Substitute (22)

into (21) to reach

∆t ≤ (1− ηt)∆t−1 + ηtγ
{
P πt−1∆t−1 + (Pt − P )Vt−1

}
;

∆t ≥ (1− ηt)∆t−1 + ηtγ
{
P π?

∆t−1 + (Pt − P )Vt−1

}
.

(23)

Applying these relations recursively, we obtain

∆t ≤ η
(t)
0 ∆0 +

t∑
i=1

η
(t)
i γ

{
P πi−1∆i−1 + (Pi − P )Vi−1

}
,

∆t ≥ η
(t)
0 ∆0 +

t∑
i=1

η
(t)
i γ

{
P π?

∆i−1 + (Pi − P )Vi−1

}
,

(24)

where we define

η
(t)
i :=





∏t
j=1(1− ηj), if i = 0,

ηi
∏t

j=i+1(1− ηj), if 0 < i < t,

ηt, if i = t.

(25)
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Comparisons to prior approaches. We take a moment to

discuss how previous analyses handle the above decomposi-

tion. Several prior work (e.g., Li et al. (2020b); Wainwright

(2019b)) tackled the second term on the right-hand side of

the relation (23) via the following crude bounds:

P πi−1∆i−1 ≤
∥∥P πi−1

∥∥
1
‖∆i−1‖∞1 = ‖∆i−1‖∞1,

P π?

∆i−1 ≥ −
∥∥P π?∥∥

1
‖∆i−1‖∞1 = −‖∆i−1‖∞1,

which, however, are too loose when characterizing the de-

pendency on 1
1−γ . By contrast, expanding terms recursively

without the above type of crude bounding and carefully an-

alyzing the aggregate terms (e.g.,
∑t

i=1 η
(t)
i P πi−1∆i−1)

play a major role in sharpening the dependence of sample

complexity on the effective horizon.

4.2.2. UPPER BOUND AND LOWER BOUND ON ∆t

We proceed to upper and lower bound ∆t separately by
exploiting the crucial relations (24) derived above. To be

more specific, defining β := c4(1−γ)
log T for some sufficiently

small constant c4 > 0, one can further decompose the upper
bound in (24) into several terms below:

∆t ≤ η
(t)
0 ∆0 +

(1−β)t
∑

i=1

η
(t)
i γ

(
P

πi−1∆i−1 + (Pi − P )Vi−1

)

︸ ︷︷ ︸
=: ζt

+

t∑

i=(1−β)t+1

η
(t)
i γ(Pi − P )Vi−1

︸ ︷︷ ︸
=: ξt

+

t∑

i=(1−β)t+1

η
(t)
i γP

πi−1∆i−1.

Let us briefly remark on the effect of the first two terms:

• Each component in the term ζt is fairly small, given

that η
(t)
i is sufficiently small for any i ≤ (1− β)t (to

see this, note that each component has undergone the

contraction (1− ηj) for sufficiently many times).

• The term ξt, which can be controlled via Freedman’s

inequality (Freedman, 1975) due to its martingale struc-

ture, contributes to the main variance term in the above

recursion. As it turns out, the resulting variance term

due to ξt depends also on {∆i} for the last few itera-

tions prior to t.

In other words, the right-hand side of the above inequality

can be further decomposed into some negligible effect and

a certain weighted superposition of several {∆i}. Viewed

in this light, a crucial step then boils down to carefully

exploiting such intertwined relations regarding {∆i} to

develop the following upper bound.

Lemma 1. With probability at least 1− δ, one has

∆t ≤ cub

√√√√
(
log4 T

)(
log |S||A|T

δ

)

(1− γ)4T

(
1 + max

t
2≤i<t

‖∆i‖∞
)
1

holds simultaneously for all t ≥ T
c2 log 1

1−γ

, where cub > 0

is some universal constant.

Similarly, making use of the lower bound in (24) allows one

to develop an analogous lower bound as follows.

Lemma 2. With probability at least 1− δ, one has

∆t ≥ −clb

√√√√
(
log4 T

)(
log |S||A|T

δ

)

(1− γ)4T

(
1 + max

t
2≤i<t

‖∆i‖∞
)
1

holds simultaneously for all t ≥ T
c2 log 1

1−γ

, where clb > 0

is some universal constant.

The preceding two bounds, which are the crux of our analy-

sis, lead to the improved sample complexity. In principle,

our analysis collects all the error terms accrued through the

iterations — instead of bounding them individually — by

conducting a high-order nonlinear expansion of the estima-

tion error through recursion, followed by careful control

of individual terms by leveraging the structure of the dis-

counted MDP. The proofs of Lemmas 1 and 2 can be found

in Li et al. (2021a, Appendix A)

4.2.3. COMBINING UPPER AND LOWER BOUNDS ON ∆t

Putting the preceding bounds in Lemmas 1 and 2 together,

we arrive at

‖∆t‖∞ .

√√√√
(
log4 T

)(
log |S||A|T

δ

)

(1− γ)4T

(
1 + max

t
2≤i<t

‖∆i‖∞
)

for all t ≥ T
c2 log 1

1−γ

with probability exceeding 1 − 2δ.

Employing elementary analysis tailored to this crucial recur-

rence relation, we can demonstrate that (where details can

be found in Li et al. (2021a, Appendix A))

‖∆T ‖∞ .

√(
log4 T

)(
log |S||A|T

δ

)

(1− γ)4T

+

(
log4 T

)(
log |S||A|T

δ

)

(1− γ)4T
(26)

with probability at least 1− 2δ. To finish up, recognize that

the sample size assumption (9b) is equivalent to saying that

(
log4 T

)(
log |S||A|T

δ

)

(1− γ)4T
≤ ε2

c3
.

When c3 > 0 is sufficiently large, substituting this relation

into (26) leads to the advertised bound

‖∆T ‖∞ ≤ 1

2
ε+

1

2
ε2 ≤ ε.
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5. Concluding remarks

In this paper, we tighten the sample complexity of vanilla Q-

learning to an order of
|S||A|

(1−γ)4ε2 for the discounted infinite-

horizon setting, and
|S||A|H4

ε2 for the finite-horizon setting

(modulo some logarithmic terms). Our analysis frame-

work, which pinpoints novel error decompositions and re-

cursion relations that are substantially different from prior

approaches, might suggest a plausible path towards sharp-

ening the sample complexity of other variants of Q-learning

(e.g., asynchronous Q-learning and double Q-learning).
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Szepesvári, C. The asymptotic convergence-rate of Q-

learning. In Advances in Neural Information Processing

Systems, pp. 1064–1070, 1998.

Tropp, J. Freedman’s inequality for matrix martingales.

Electronic Communications in Probability, 16:262–270,

2011.

Tsitsiklis, J. N. Asynchronous stochastic approximation and

Q-learning. Machine learning, 16(3):185–202, 1994.

Wai, H.-T., Hong, M., Yang, Z., Wang, Z., and Tang, K.

Variance reduced policy evaluation with smooth function

approximation. Advances in Neural Information Process-

ing Systems, 32:5784–5795, 2019.

Wainwright, M. High-Dimensional Statistics: A Non-

Asymptotic Viewpoint. Cambridge Series in Statistical and

Probabilistic Mathematics. Cambridge University Press,

2019a.

Wainwright, M. J. Stochastic approximation with cone-

contractive operators: Sharp `∞-bounds for Q-learning.

arXiv preprint arXiv:1905.06265, 2019b.

Wainwright, M. J. Variance-reduced Q-learning is minimax

optimal. arXiv preprint arXiv:1906.04697, 2019c.

Wang, B., Yan, Y., and Fan, J. Sample-efficient reinforce-

ment learning for linearly-parameterized mdps with a gen-

erative model. arXiv preprint arXiv:2105.14016, 2021.

Wang, Y., Dong, K., Chen, X., and Wang, L. Q-learning with

UCB exploration is sample efficient for infinite-horizon

MDP. In International Conference on Learning Repre-

sentations, 2020.

Watkins, C. J. and Dayan, P. Q-learning. Machine learning,

8(3-4):279–292, 1992.

Watkins, C. J. C. H. Learning from delayed rewards. 1989.

Weng, B., Xiong, H., Zhao, L., Liang, Y., and Zhang, W.

Momentum Q-learning with finite-sample convergence

guarantee. arXiv preprint arXiv:2007.15418, 2020a.

Weng, W., Gupta, H., He, N., Ying, L., and Srikant, R. The

mean-squared error of double Q-learning. Advances in

Neural Information Processing Systems, 33, 2020b.



Tightening the Dependence on Horizon in the Sample Complexity of Q-Learning

Weng, W., Gupta, H., He, N., Ying, L., and Srikant, R.

Provably-efficient double Q-learning. arXiv preprint

arXiv:2007.05034, 2020c.

Wu, Y., Zhang, W., Xu, P., and Gu, Q. A finite time analysis

of two time-scale actor critic methods. arXiv preprint

arXiv:2005.01350, 2020.

Xiong, H., Zhao, L., Liang, Y., and Zhang, W. Finite-

time analysis for double Q-learning. Advances in Neural

Information Processing Systems, 33, 2020.

Xu, P. and Gu, Q. A finite-time analysis of Q-learning

with neural network function approximation. In Inter-

national Conference on Machine Learning, pp. 10555–

10565. PMLR, 2020.

Xu, T., Wang, Z., Zhou, Y., and Liang, Y. Reanalysis

of variance reduced temporal difference learning. In

International Conference on Learning Representations,

2019a.

Xu, T., Zou, S., and Liang, Y. Two time-scale off-policy

TD learning: Non-asymptotic analysis over Markovian

samples. In Advances in Neural Information Processing

Systems, pp. 10633–10643, 2019b.

Zhang, Z., Zhou, Y., and Ji, X. Almost optimal model-free

reinforcement learning via reference-advantage decom-

position. Advances in Neural Information Processing

Systems, 33, 2020a.

Zhang, Z., Zhou, Y., and Ji, X. Model-free reinforcement

learning: from clipped pseudo-regret to sample complex-

ity. arXiv preprint arXiv:2006.03864, 2020b.


